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Learning and predicting the performance of given software configurations are of high importance to many

software engineering activities. While configurable software systems will almost certainly face diverse

running environments (e.g., version, hardware, and workload), current work often either builds performance

models under a single environment or fails to properly handle data from diverse settings, hence restricting

their accuracy for new environments. In this paper, we target configuration performance learning under

multiple environments. We do so by designing SeMPL—a meta-learning framework that learns the common

understanding from configurations measured in distinct (meta) environments and generalizes them to the

unforeseen, target environment. What makes it unique is that unlike common meta-learning frameworks

(e.g., MAML and MetaSGD) that train the meta environments in parallel, we train them sequentially, one at a

time. The order of training naturally allows discriminating the contributions among meta environments in the

meta-model built, which fits better with the characteristic of configuration data that is known to dramatically

differ between different environments. Through comparing with 15 state-of-the-art models under nine systems,

our extensive experimental results demonstrate that SeMPL performs considerably better on 89% of the systems

with up to 99% accuracy improvement, while being data-efficient, leading to a maximum of 3.86× speedup. All

code and data can be found at our repository: https://github.com/ideas-labo/SeMPL.
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1 INTRODUCTION
Most software systems can be flexibly configured to meet the needs of a certain scenario. This is

achieved by jointly adjusting various configuration options, which can determine, e.g., the size

of the threads pool; the capacity of the cache; or the underlying algorithm to use [Chen and Li

2023a,b; Sayagh et al. 2020]. As such, the configuration will inevitably lead to considerable impacts

on the performance, e.g., runtime and throughput. Even carefully managed configuration could
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still be error-prone and result in devastating consequences—a previous study finds that 59% of the

configuration-related issues have caused severe performance concerns in modern configurable

software systems [Han and Yu 2016].

The key to configuration management is how to accurately infer the performance of the given

configurations via a performance model, serving as the foundation for, e.g., performance debug-

ging [Iqbal et al. 2022], configuration tuning [Nair et al. 2020], and even self-adaptation [Chen 2022;

Chen and Bahsoon 2017b; Chen et al. 2018]. This, however, can neither be realistically tackled by

analytical models (due to diverse types of configuration options [Chen and Li 2021]) nor profiling

(due to expensive measurement [Nair et al. 2020]). Through learning on the available data, current

work has successfully leveraged machine learning to build various performance models [Gong and

Chen 2022]. Yet, those approaches mostly focus on configuration performance learning under one

environment [Chen et al. 2021; Gong and Chen 2023; Guo et al. 2018; Ha and Zhang 2019; Queiroz

et al. 2016; Siegmund et al. 2012a,b; Valov et al. 2015], e.g., a pre-defined workload, a fixed hardware,

and a specific version.

Working on a single environment is an over-optimistic assumption as it is not uncommon to

see configurable software systems run under diverse conditions. For example, a database system

may experience both read-heavy and write-heavy workload [Jamshidi et al. 2017a]. Similarly, the

hardware between the testing and production infrastructure might be drastically different [Brunnert

et al. 2015; Leitner and Cito 2016], especially during the modern DevOps era. The ignorance of

multiple environments would inevitably harm the effectiveness of a performance model. Jamshidi

et al. [2017a] reveal that the accuracy of a single environment model can be severely degraded

when used in a different environment. Furthermore, due to the expensive measurement of config-

uration, e.g., it can take hours or days to measure only a few configurations [Chen and Li 2021;

Valov et al. 2017], building a new model for every distinct environment is unrealistic. Recently, at

ICSE’23, Mühlbauer et al. [2023] have demonstrated that predicting under multiple environments

can pose significant threats to the robustness and generalizability of performance models learned

using a single environment. Through a large-scale study, they concluded that:

“Performance models based on a single workload are useless, unless the configuration
options’ sensitivity to workloads is accounted for.”

As a result, the failure to take multiple environments into account when learning the performance

model for configurable software not only degrades accuracy but also incurs extra overhead of model

re-building, as the valuable data samples measured under different environments are wasted [Iorio

et al. 2019; Krishna et al. 2021; Nair et al. 2018]. This leads to a previously unaddressed problem: How
to effectively leverage configurations measured in different environments for modeling configuration
performance? Yet, learning a performance model under multiple environments for configurable

software is challenging due to the large variations between data measured in distinct environments.

For example, several studies have revealed that varying environments can cause substantial changes

in the performance distributions with non-monotonic correlations, including workloads [Chen

2022; Mühlbauer et al. 2023; Pereira et al. 2020], versions [Martin et al. 2022] and hardware [Jamshidi

et al. 2017a].

Despite being uncommon, Mühlbauer et al. [2023] summarized two major categories from

existing work on how multiple environments have been handled, each with their own limitations:

(1) Environment as additional features [Chen 2019; Chen and Bahsoon 2017a; Koc et al.
2021; Lengauer et al. 2014]:Here, the specific properties of an environment, e.g., size and job

counts, are considered as model features alongside the configuration options in performance

model learning. However, in this category, not only the additional measurements can be
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costly, but the extra dimension(s) also make the true concept more difficult to learn and

generalize.

(2) Transfer learning [Jamshidi et al. 2017b; Krishna et al. 2021; Martin et al. 2022; Valov
et al. 2017]: Given an existing performance model trained in the source environment(s),

its differences to the new environment can be learned via transfer learning models. Yet, the

key shortcoming thereof is that the loss function in transfer learning is tailored to a specific

target environment, hence lacking generalizability to arbitrary environments.

In this paper, we propose the third category to address the aforementioned gap and challenges

using the concept of meta-learning—a form of machine learning that is capable of “learning to

learn” by learning data across multiple environments (or tasks
1
), and generalize the learning

to an unforeseen one. From this, we present Sequential Meta Performance Learning (SeMPL), a
framework that produces a general meta-model learned from data of all existing meta environments

during pre-training. When needed, such a meta-model can then be quickly adapted for accurately

predicting performance under a target environment via fine-tuning. What makes SeMPL unique is

that, unlike popular general-purpose meta-learning frameworks such as MAML [Finn et al. 2017]

and MetaSGD [Li et al. 2017] which learn the data of meta environments in parallel, SeMPL follows

sequential meta-learning that learns the datasets of meta environments one at a time in a specific

order, aiming to discriminate their contributions in the meta-model built. This is a tailored design

to deal with the potentially large variations between measurements in different environments from

the configuration data.

Specifically, our contributions are:

• We justify, both analytically and empirically, why the concept of sequential meta-learning

in SeMPL is more suitable for learning multi-environment configuration data than general

frameworks such as MAML and MetaSGD, according to three unique properties in SeMPL:
(1) the sequence matters;

(2) train later contributes more;

(3) and using more meta environments are beneficial.

• Drawing on those properties provided by SeMPL, we design a novel method that selects the

optimal sequence of learning the data of meta environments, which fits the characteristics of

the configuration data under multiple environments.

• Based on nine systems with 3-10 meta environments and five training data sizes each, we

experimentally compare SeMPL against 15 state-of-the-art models for single or multiple

environments, taken from the software, system, and machine learning communities.

The results are encouraging: SeMPL significantly outperforms existing models in 89% of the

systems with up to 99% accuracy improvement; it is also data-efficient with at most 3.86× speedup.

The paper is organized as follows: Section 2 overviews the preliminaries and related work.

Section 3 elaborates the theory behind this work and Section 4 illustrates the algorithm and details

of the SeMPL framework. Section 5 presents the experimental setup followed by the experiment

results in Section 6. Discussion and conclusion are presented in Section 7 and 8, respectively.

2 PRELIMINARIES AND RELATEDWORK
2.1 Single Environment Configuration Performance Learning
Learning performance for configurable software systems is commonly formulated as single-task

learning that learns and generalizes data under a single environment. Formally, we aim to build a

1
In this paper, we use task and environment interchangeably.
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regression model 𝑓 that predicts the performance 𝑝 of an unforeseen configuration x′:
Train: ℰ𝑡𝑎𝑟𝑔𝑒𝑡 =⇒ 𝑓

Predict: 𝑓 (x′) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 | x′ ∈ ℰ𝑡𝑎𝑟𝑔𝑒𝑡

(1)

whereby ℰ𝑡𝑎𝑟𝑔𝑒𝑡 denotes the training samples of configuration-performance pairs ({C → P})
measured under the target environment, such that x ∈ ℰ𝑡𝑎𝑟𝑔𝑒𝑡 = {C → P}. x is a measured config-

uration and x = (𝑥1, 𝑥2, · · · , 𝑥𝑛), where there are 𝑛 configuration options and each option 𝑥𝑖 can be

either binary or categorical/numerical. 𝑓 should be trained in such a way that its prediction (𝑝𝑡𝑎𝑟𝑔𝑒𝑡 )

on x′ is as close to the actual performance as possible. Many models for learning configuration

performance in a single environment have been proposed [Chen et al. 2021; Gong and Chen 2023;

Guo et al. 2018; Ha and Zhang 2019; Queiroz et al. 2016; Siegmund et al. 2012a,b; Valov et al. 2015].

Here, we briefly explain some state-of-the-art models, which are also compared in Section 6:

• DeepPerf [Ha and Zhang 2019]: a Deep Neural Network (DNN) model with 𝐿1 regularization

and fast hyperparameter tuning for sparse performance learning.

• DECART [Guo et al. 2018]: an improved regression tree model [Breiman 2017] with a specialized

sampling mechanism.

• Random Forest (RF) [Chen et al. 2021; Queiroz et al. 2016; Valov et al. 2015]: an ensemble of

trees that tackle the feature sparsity issue.

• SPLConqueror [Siegmund et al. 2012b]: a baseline model that relies on linear regression.

• XGBoost [Chen and Guestrin 2016]: a gradient boosting algorithm that leverages the combi-

nation of multiple trees to create a robust ensemble.

2.2 Configuration Performance Learning with Multiple Environment Inputs
To handle multiple environments, a natural way is to combine the environmental features with con-

figuration options in the model. In this way, Equation (1) remains unchanged but the configuration-

performance pairs from all available environments are merged and the environment features serve

as additional inputs, denoted as E, i.e., ℰ𝑡𝑎𝑟𝑔𝑒𝑡 = {C × E → P}. For example, Chen [2019] has

followed this strategy to examine various types of underlying models. The environmental features

therein are the workload and request rate, etc. More domain-specific environmental features also ex-

ist, such as those for program verification [Koc et al. 2021], high-performance computing [Lengauer

et al. 2014], and cloud computing [Chen and Bahsoon 2017a].

However, a major limitation thereof is that the combined input space of options and envi-

ronmental features makes the training even more difficult, as not all options are environment-

sensitive [Lesoil et al. 2023].

2.3 Joint Learning for Configuration Performance
2.3.1 Transfer Configuration Performance Learning. Building performance models under multiple

environments can be also handled by transfer learning, in which Equation (1) is changed to:

Train: ℰ1 ∪ ℰ2... ∪ ℰ𝑚 ∪ ℰ𝑡𝑎𝑟𝑔𝑒𝑡 =⇒ 𝑓

Predict: 𝑓 (x′) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 | x′ ∈ ℰ𝑡𝑎𝑟𝑔𝑒𝑡

(2)

Here, by treating the learning of data under different environments as independent tasks, both the

data from source environment(s) (ℰ1, ...,ℰ𝑚) and target environment (ℰ𝑡𝑎𝑟𝑔𝑒𝑡 ) are jointly learned

by a base learner with information sharing on, e.g., model parameters/data samples [Jamshidi

et al. 2017b; Krishna et al. 2021], features [Martin et al. 2022], or prediction outputs [Valov et al.

2017]. Among others, BEETLE [Krishna et al. 2021] is a transfer learning model for configuration

performance learning. The key idea is to evaluate all the source-target pairs over the candidate

environments and identify the best source as the “bellwether” to use. The data of the source and
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target environment are jointly learned by a regression tree model. tEAMS [Martin et al. 2022] is a

recent model caters for the evolution of configurable software. With feature alignment, the model

trained on the data of an older version is transferred to learn the data under the new version.

Yet, the key limitation of transfer learning is that, regardless of how many environments serve

as the source data, the loss function therein needs to be specific to the target environment, making

it difficult to generalize to the other environments [Torrey and Shavlik 2010].

2.3.2 Multi-Task Configuration Performance Learning. To cope with the above limitation, a relevant

paradigm is multi-task learning, which can also learn data from multiple environments as the

sources (ℰ1, ...,ℰ𝑚) [Alabed and Yoneki 2021; Madhumathi and Suresh 2018; Yang and Hospedales

2017] and has the ability to generalize the predictions for all environments learned simultaneously.

Here, Equation (2) will be changed to:

Train: ℰ1 ∪ ℰ2... ∪ ℰ𝑚 ∪ ℰ𝑡𝑎𝑟𝑔𝑒𝑡 =⇒ 𝑓

Predict: 𝑓 (x′) = {𝑝1, 𝑝2, ..., 𝑝𝑚, 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 } | x′ ∈ ℰ𝑡𝑎𝑟𝑔𝑒𝑡

(3)

whereby 𝑝𝑚 is the predicted performance of x′ under the 𝑚th environment. There is no clear

distinction between source and target environments, as the key in multi-task learning is to share

information on data from whatever available environments. For example, Madhumathi and Suresh

[2018] propose Multi-Output Random Forest (MORF), a multi-task learning version of Random

Forest where there is one dedicated output for each environment of performance prediction.

However, the training requires foreseeing the target environment and suffers “negative transfer”,

as task gradients may interfere, overcomplicating the loss function landscape [Standley et al. 2020].

2.4 Meta-Learning for Configuration Performance
Unlike transfer and multi-task learning, meta-learning seeks to learn a meta-model based on some

readily available data from known environments (a.k.a meta environments) without foreseeing the

target environment [Vilalta and Drissi 2002]. Formally, in meta-learning, the process becomes:

Train: ℰ1 ∪ ℰ2... ∪ ℰ𝑚 =⇒ 𝑓 ′; ℰ𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑓 ′ =⇒ 𝑓

Predict: 𝑓 (x′) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 | x′ ∈ ℰ𝑡𝑎𝑟𝑔𝑒𝑡

(4)

The key idea is that by learning the data of meta environments using a base learner at the meta-level,

the meta-model 𝑓 ′ will obtain the ability of “learning to learn”, enabling easier fine-tuning on the

new target environment (ℰ𝑡𝑎𝑟𝑔𝑒𝑡 ) when it becomes available. As such, meta-learning achieves: (1)

fast adaptation; and (2) a better generalized and more accurate model [Jamshidi et al. 2017b].

Although rarely used for configuration performance learning, there exist different models for

meta-learning in the machine learning community [Chua et al. 2021; Finn et al. 2017; Li et al.

2017; Yao et al. 2019], in which the meta tasks are learned simultaneously and the outcomes are

combined. The most noticeable ones are MAML [Finn et al. 2017] and its variant MetaSGD [Li et al.
2017]: MAML [Finn et al. 2017] is a state-of-the-art meta-learning framework that has been widely

applied in different domains [Chen and Chen 2022], including software engineering [Chai et al.

2022]. MAML, if used for configuration performance learning, learns a set of good model parameter

values on data of the meta environments in parallel, building a meta-model (𝑓 ′), which can then

be adapted to build a fine-tuned model 𝑓 for the target environment. In contrast, MetaSGD [Li

et al. 2017] extends the MAML by additionally adapting the learning rate along the meta-training,

expediting the learning over MAML.
Nevertheless, in Section 3, we will explain why general models like MAML are relatively ill-

suited to configuration performance learning and elaborate on the theory behind the proposed

SeMPL framework.
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Meta model

∑
...

𝜃

update 𝜃
𝜃1′ 𝜃𝑚′

Inner loop
Outer loop

𝐸1 𝐸𝑚

(a) MAML

Meta model

𝜃

update 𝜃m′

Inner loop

...

Outer loop

𝐸1
𝐸2

𝐸𝑚

update 𝜃1′𝜃1′
update 𝜃2′

𝜃𝑚−1′

(b) SeMPL

Fig. 1. Workflow of MAML and the proposed SeMPL. The meta-model can be produced by any base learner.

3 THE THEORY BEHIND SEMPL FOR CONFIGURATION PERFORMANCE LEARNING
In essence, the key to the success of MAML (and its variants) is that it can produce a set of good model

parameter values for the target environment to start training, paired with any gradient descent-

based learner, which enables fast adaptation of the created meta-model [Raghu et al. 2020]. As in

Figure 1a, this is achieved via iteratively updating the parameters of the meta-model (\ for the outer

loop
2
) using those trained on the data of each meta environment individually (i.e., \ ′

1
, ..., \ ′𝑚 from the

inner loop). In such a process, data of all meta environments are learned simultaneously followed

by a linear aggregation of their model parameter values, hence they provide equal contributions to

the meta-model. This, however, is ill-suited for the performance learning of configurable software

systems. Because, unlike some other domains, prior studies have revealed that the data from distinct

environments exhibit drastically different correlations between performance and configuration:

• A study on x264 [Pereira et al. 2020] showed that different video inputs can lead to varying

and non-monotonic performance results.

• Chen [2022] discovered dramatic configuration landscape shifts due to workload changes.

• Mühlbauer et al. [2023] reported that varying workloads can change how configuration

options affect performance, causing drastic variations among performance distributions.

• Jamshidi et al. [2017a] revealed the non-linear correlation on data from different workloads,

software versions and hardware.

As a result, these prior observations derive the following insight:

Insight of Learning Configuration Data: The ideal parameter values and distributions

for models learned under different environments can be, unfortunately, rather different.

This means that treating all meta environments equally in MAML can force some less useful (or

even misleading) meta environments to contribute, causing some model parameter values to largely

deviate from the optima required for the target environment. Therefore, what we need is a tailored

model for multi-environment configuration performance learning with the following requirements:

• Requirement 1: Configuration data of distinct meta environments should be discriminated.

• Requirement 2: Configuration data of distinct meta environments should have alterable

contributions to the learning.

2
The default iteration limit of the outer loop in MAML is 1.
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• Requirement 3: The valuable information of data from different meta environments should

be exploited fully since measuring configurations is highly expensive [Chen and Li 2021;

Nair et al. 2020].

A naive (perhaps natural) solution to the above is to consider weights betweenmeta environments

when updating the \ in MAML. However, this has the following shortcomings:

• It is difficult to precisely quantify the relative contributions between meta environments, as

the model parameter values of neurons are naturally multi-dimensional.

• Setting/updating the weights is challenging, especially with more meta environments—a

typical cognitive issue when weighting on multiple criteria/entities [Li et al. 2022].

• It has been shown that the weights can obscure the optimization during the training [Chen

and Li 2023b].

Instead of weights, we propose sequential meta-learning in SeMPL: as in Figure 1b, the datasets

in distinct meta environments are learned one by one in a certain order, and so does the update of

meta-model’s parameters \ . The sequence of meta environments prioritizes their contributions to

learning, thereby resolving the limitation of MAML for configuration performance learning without

extra parameters. In what follows, we elaborate on the theory behind SeMPL and its properties.

3.1 The Sequence Matters
The very first property that we intentionally design for SeMPL, which meets Requirement 1, is:

Property 1. The sequence of learning the data in distinct meta environments significantly influences
the meta-model built, hence leading to different adaptation effects for the target environment.

Given that the datasets in meta environments are learned in sequence with only one being

considered each time, the model parameter values for a meta environment trained earlier would

serve as the initial values of the ones that will be learned later. As such, different sequences would

cause distinct orders of intermediate initialization on the model parameter values for learning some

meta environments. Since the heuristic of gradient descent in training is often stochastic and the

training sample size can be limited for configurable software systems, working on different sets of

starting points would most likely have different results, leading to diverse meta-models in the end.

For example, Figure 2a illustrates the distributions of model parameter values when trained

individually on data of three single environments, namely ℰ1, ℰ2, and ℰ3. With SeMPL in this case

(Figure 2b), the model parameter values trained from ℰ1 becomes the initial values for learning the

data of ℰ2, after which the values become the initials for learning the ℰ3 data. Here, the resulted

model parameter values when learning the data of ℰ2, whose initialization is set by learning

the data of ℰ1, would lead to a distribution mixed from those of learning the data of each meta

environment individually (Figure 2a). As such, if we swap ℰ1 with ℰ3, the resulting distribution of

model parameter values would be different. MAML, in contrast, is insensitive to the sequence of meta

environments as all of them are learned simultaneously and the learned model parameter values

are aggregated to update the meta-model, as in Figure 2c. Figure 3a shows the empirical results for

a randomly selected system and we observed similar outcomes for the others. Clearly, the different

sequences in the meta-learning of SeMPL can lead to distinct accuracy for the target environment.

3.2 Train Later Contributes More
To satisfy Requirement 2, a related property that can be derived from Property 1 in SeMPL is:

Property 2. If the data of meta environment ℰ𝑖+1 is learned later than that of ℰ𝑖 , then the model
parameter values of meta-model are more similar to those of learning ℰ𝑖+1 data alone than those
trained under ℰ𝑖 . Therefore, data of the more useful meta environment should be learned later.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 17. Publication date: July 2024.
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Learned values of E1 Learned values of E2 Learned values of E3 Optimal values of Etarget

(a) Configuration performance learning under independent single environment

Learned values of E1 Learned values of E2 Learned values of E3 Initial values for Etarget

      

(b) Multi-environment configuration performance learning with SeMPL

Learned values of E1 Learned values of E2 Learned values of E3 Initial values for Etarget

 
   

(c) Multi-environment configuration performance learning with MAML

Fig. 2. Illustrating the distributions of the model parameter values in different situations under a real-world

software system; the base learner is a regularized Deep Neural Network (it is best viewed in color). The x-

and y-axis are model parameters and their corresponding values, respectively.

With the sequential training of meta environments data in SeMPL, it is easy to see that, if there

are 𝑛 meta environments (𝑛 > 0), the model parameter values learned on ℰ𝑖 will experience 𝑛 − 𝑖
(𝑖 ∈ [1, 𝑛]) updates later on. Since in each update, the training tends to tune the model parameter to

fit the data in the corresponding meta environment, which can be rather different to ℰ𝑖 due to the

characteristics of configuration landscape, the distribution of model parameter values learned from

ℰ𝑖 will be gradually overridden with more subsequent updates. As a result, the bigger the 𝑖 , i.e.,

a meta environment sits at a later position of the sequence, the fewer updates to the parameters

trained under ℰ𝑖 , allowing it to preserve more model parameter values (and distribution) in the

meta-model and contribute more therein than the meta environments learned earlier. Importantly,

this leads to an obvious rule: the more useful meta environments—those that can provide better

initial model parameter values for the target environment—should be left to later positions (we will

explain how we measure the usefulness in Section 4).

Using the example from Figure 2b again, clearly, the model parameter values learned on the

first meta environment ℰ1 will need to be updated via learning the ℰ2 data and ℰ3 data, hence

it only contributes to the smallest proportion of its distribution in the meta-model. In contrast,

the last meta environment ℰ3 will contribute the most to the meta-model as most of the model

parameter values learned under it will be preserved into those of the meta-model (i.e., there will be

no further update). ℰ2 contributes less than ℰ3 but more than ℰ1, as its resulted model parameter

values are updated once. According to Figure 2a, in this case, ℰ3 has most parts of its parameter

distribution close to that of ℰ𝑡𝑎𝑟𝑔𝑒𝑡 , hence it is beneficial to leave it as the last to be learned, which

preserves more of its model parameter values. Similarly, ℰ2 tends to have more proportions of its

parameter distribution closer to that of ℰ𝑡𝑎𝑟𝑔𝑒𝑡 than that of ℰ1, hence learning its data later than

that of ℰ1 would ensure it contributes relatively more. All these can then lead to good initialization
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Fig. 3. Empirical results that verify the properties of real-world software systems. The y-axis is the testing

Mean Relative Error (MRE) on ℰ𝑡𝑎𝑟𝑔𝑒𝑡 . (a) confirms Property 1 and 2; ℰ3 is the most useful environments for

ℰ𝑡𝑎𝑟𝑔𝑒𝑡 , following by ℰ2 and then ℰ1. (b) reveals Property 3.

of the parameter’s value in the meta-model (the rightmost in Figure 2b) with respect to the optimal

parameter distribution for ℰ𝑡𝑎𝑟𝑔𝑒𝑡 (the rightmost in Figure 2a). Empirically, for a real-world system

in Figure 3a, placing the more useful meta environments to the latter positions in SeMPL can lead

to better accuracy for the target environment. Similar results have been observed in other cases.

MAML (Figure 2c), in contrast, forces all meta environments to contribute equally in an aggregation

to update the parameter values in the meta-model, hence for configuration data, this can easily result

in an initial distribution that is highly deviated from the optimal setting of the target environment

(the rightmost in Figure 2c). We will also experimentally justify this in Section 6.

3.3 More Meta Environments are Beneficial
It is natural to ask, given Property 1 and Property 2, why not use only the most useful meta

environment to initialize the model parameters for the target environment? The answer is that

those less useful meta environments, albeit contributing to relatively fewer proportions in the meta-

model, may still provide excellent starting points for certain parts of the parameter distribution.

This leads to SeMPL’s final property that fulfills Requirement 3:

Property 3. Learning frommore meta environments can help to cover the “corner cases” of initialing
the model parameter values for the target environment.

Considering the example from Figure 2b, we see that, although ℰ1 only preserves a small part of

its learned parameter distribution in the meta-model, this may still be close to the optimal setting

for the target environment (e.g., the peak parameter values as in Figure 2b), hence complementary

to what is missing in the contributions from ℰ2 and ℰ3. The same principle can be similarly applied

for ℰ2. As a random example, Figure 3b illustrates the sensitivity of SeMPL’s accuracy over a target

environment to the number of meta environments (with the appropriate sequence). Clearly, the

more meta environments, the better the accuracy—a pattern that we observed for all systems.

Noteworthily, Property 3 may not be true for MAML as exploiting all meta environments equally

makes it severely suffer from the side-effect of less useful meta environments, which is not un-

common with the configuration data. SeMPL, in contrast, is able to mitigate such a side-effect by

prioritizing the sequence of meta environments, thanks to Property 1 and Property 2. Indeed, as
we will show in Section 6.2, the sequence-insensitivity has caused MAML to perform significantly

worse than SeMPL in learning configuration performance data.
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Fig. 4. The SeMPL architecture for learning configuration performance of a systemwithmultiple environments.

4 IMPLEMENTING AND ENGINEERING SEMPL

To engineer the properties from the theory behind SeMPL that fulfill the requirements for config-

uration performance learning under multiple environments, our implementation has three core

components, namely, Sequence Selection, Meta-Training, and Fine-Tuning. The former two resemble

a pre-training process for the outer and inner loop (Figure 1b) whereas the last is triggered when

the target environment becomes available, as shown in Figure 4. These are specified below:

• Sequence Selection: This component finds the optimal training sequence of meta environ-

ment data in SeMPLwith respect to Property 1 and Property 2, considering all the available

environments (Property 3). It deals with three low-level questions:

(1) How to assess the usefulness of the data of a known meta environment with respect to an

unforeseen target environment?

(2) How to ensure such an assessment is reliable?

(3) How to guarantee efficiency in the assessment?

• Meta-Training: Here, we update the parameters of meta-model by sequentially learning the

data of meta environments following the order provided by the Sequence Selection.
• Fine-Tuning: Given the meta-model from the Meta-Training, here the aim is to update the

model parameter values using measured configurations under the target environment.

Given the flexible nature, SeMPL is agnostic to the base learner that learns the meta-model, hence

it can be paired with any regression learning algorithm from the literature. In the following, we

will delineate the above components and the pre-training process of SeMPL in Algorithm 1.

4.1 Sequence Selection
4.1.1 How to assess the usefulness of meta environments to the target environment? Since the target

environment is unforeseen by the time of building the meta-model, we assess the overall Mean

Relative Error (MRE) on how the single-model ℳ𝑖 , which is trained under an individual meta

environment ℰ𝑖 , performs when being validated across all other remaining meta environments.

Formally, MRE is a widely used scale-free metric for performance prediction [Guo et al. 2018; Ha

and Zhang 2019; Shu et al. 2020]:

𝑀𝑅𝐸 =
1

𝑘
×

𝑘∑︁
𝑡=1

|𝐴𝑡 − 𝑃𝑡 |
𝐴𝑡

× 100% (5)
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Algorithm 1: Sequence Selection
Input: Data from meta environments ℰ = {ℰ1,ℰ2, ...,ℰ𝑛 }
Output: The optimal sequence ℰ𝑠𝑒𝑞

1 for ∀ℰ𝑖 ∈ ℰ do
2 M𝑖 ← train(ℰ𝑖 )

3 for ∀ℰ𝑗 ∈ ℰ do
4 if ℰ𝑗 is not ℰ𝑖 then
5 A← aij = testMREwithRepeats(M𝑖 ,ℰ𝑗 )

6 else
7 A← ∅

8 for ∀ℰ𝑗 ∈ ℰ do
9 for ∀ℰ𝑖 ∈ ℰ do
10 a′j ← aij ∈ A

11 rj = scottKnottTest(a′j )
12 for ∀𝑟𝑖 𝑗 ∈ rj : 𝑟𝑖 𝑗 ≠ 0 do
13 R← 𝑟𝑖 𝑗

14 for ∀row ri ∈ R do
15 𝑟𝑚𝑒𝑎𝑛 = averaging the rank scores 𝑟𝑖 𝑗 ∈ ri
16 ℰ𝑠𝑒𝑞 ← {ℰ𝑖/M𝑖 , 𝑟𝑚𝑒𝑎𝑛 }
17 return ℰ𝑠𝑒𝑞 ← sort(ℰ𝑠𝑒𝑞 )

Algorithm 2:Meta-Training

Input: The optimal sequence ℰ𝑠𝑒𝑞

Output: The meta-modelℳ𝑚𝑒𝑡𝑎

1 M𝑚𝑒𝑡𝑎 ← randomly initialized model

2 while not done do
3 for ∀ℰ𝑖 ∈ ℰ𝑠𝑒𝑞 do
4 M𝑚𝑒𝑡𝑎 ← train(M𝑚𝑒𝑡𝑎,ℰ𝑖 )

5 returnM𝑚𝑒𝑡𝑎

Algorithm 3: Fine-Tuning
Input: The meta-modelℳ𝑚𝑒𝑡𝑎

Output: The fine-tuned modelℳ𝑡𝑢𝑛𝑒𝑑

1 ℰ𝑡𝑎𝑟𝑔𝑒𝑡 ← measured data samples from

the target environment

2 returnM𝑡𝑢𝑛𝑒𝑑 ←
train(M𝑚𝑒𝑡𝑎,ℰ𝑡𝑎𝑟𝑔𝑒𝑡 )

whereby 𝐴𝑡 and 𝑃𝑡 denote the 𝑡 th actual and predicted performance, respectively. A better overall

MRE implies that the distribution of model parameter values learned from ℰ𝑖 is generally closer

to all the optimal distributions required for fully learning the data of other meta environments,

thereby serving as an indicator of the possible usefulness for the unforeseen target environment. As

such, ℰ𝑖 will more likely be useful for contributing to the meta-model, enabling quicker adaptation

for the unknown target environment.

Algorithm 1 (lines 2-7) demonstrates the assessment steps below:

(1) Train a single-model ℳ𝑖 using all the available data for a meta environment ℰ𝑖 (line 2).
(2) Test single-modelℳ𝑖 over all data for the remaining meta environments ℰ𝑗 . This is repeated

𝑥 times (𝑥 = 30 in this work as we found that using more repeats did not change the result),

leading to 𝑥 MRE values for each tested meta environment, denoted as a vector aij (line 3-7).
(3) All the aij are represented in a matrix A below:

A =

ℰ1 ℰ2 · · · ℰ𝑛


ℳ1 ∅ a12 · · · a1n
ℳ2 a21 ∅ · · · a2n
...

...
...

. . .
...

ℳ𝑛 an1 an2 · · · ∅

(6)

(4) Repeat from (1) till there is a single-model for every meta environment.

4.1.2 How to ensure the reliability of assessment? A naive way to sort the sequence would be to

directly use the overall MRE as the metric in the comparison. This, however, entails two issues:

• Since the overall MRE covers the accuracy tested over all the remaining meta environments,

the comparisons may fail to consider statistical significance even with repeated runs.
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• Due to the residual nature of MRE, the single-model ℳ𝑖 has to be built by the base learner,

which may not be realistic when the training is expensive (see Section 4.1.3).

Instead, in SeMPL we use Scott-Knott test [Mittas and Angelis 2013] to rank the MREs of all

single-models tested on one meta environment, then average the ranks for a single-model ℳ𝑖

when testing it on all the remaining meta environments. Scott-Knott sorts the list of treatments

(e.g., a1j, a2j, ..., anj from all single-models tested on the 𝑗th meta environment) by their average

MRE. Next, it splits the list into two sub-lists with the largest difference Δ [Xia et al. 2018]:

Δ =
|𝑙1 |
|𝑙 | (𝑙1 − 𝑙)

2 + |𝑙2 ||𝑙 | (𝑙2 − 𝑙)
2

(7)

whereby |𝑙1 | and |𝑙2 | are the sizes of two sub-lists (𝑙1 and 𝑙2) from list 𝑙 with a size |𝑙 |. 𝑙1, 𝑙2, and 𝑙
denote their mean MRE. During the splitting, bootstrapping and 𝐴12 [Vargha and Delaney 2000]

are applied to check if 𝑙1 and 𝑙2 are significantly different. If that is the case, Scott-Knott recurses on

the splits. In other words, the models are divided into different sub-lists if both bootstrap sampling

suggests that a split is significant under a confidence level of 99% and with a good effect 𝐴12 ≥ 0.6.

The sub-lists are then ranked based on their mean MRE. For example, when comparing 𝐴, 𝐵, and𝐶 ,

a possible split could be {𝐴, 𝐵}, {𝐶}, with the rank score of 1 and 2, respectively. Hence, statistically,

we say that 𝐴 and 𝐵 perform similarly, but they are significantly better than 𝐶 .

Specifically, we compute the final rank scores as in Algorithm 1 (lines 9-17):

(1) Get the repeated MREs for all single-models tested for a meta environment ℰ𝑗 (lines 9-10).

(2) Compute the vector of rank scores rj for all single-models when testing on ℰ𝑗 (line 11).

(3) Replace the tested result for ℰ𝑗 in matrix A from a vector aij to a single value of rank score

𝑟𝑖 𝑗 , forming a new matrix of ranks R. (lines 12-13).
(4) Repeat from (1) until all tested meta environments are covered.

(5) Compute the average rank (ri) over all tested meta environments for each single-model ℳ𝑖 ,

and put it with the corresponding meta environment learned by ℳ𝑖 in ℰ𝑠𝑒𝑞 (lines 14-16).

The optimal sequence of training the meta environments can be found by sorting the average

rank scores in ℰ𝑠𝑒𝑞 descendingly (line 17)—the most useful meta environment is left to the last.

4.1.3 How to guarantee efficiency? Ideally, the single-modelℳ𝑖 used when assessing the useful-

ness of the meta environments for a target environment should be also learned by the base learner.

Yet, training some base learners, such as DNN, can be expensive, especially when we need to train

a single-model for each meta environment. To ensure efficiency, in SeMPL, we use linear regression
as a surrogate of the base learner to build ℳ𝑖 since it has negligible overhead.

Indeed, the MRE of linear regression can differ from that of the base learner. However, through

Scott-Knott test, we are mainly interested in the relative ranks between the MREs from different

single-models rather than their residual accuracy. As a result, simple models like linear regression

can still produce similarly coarse-grained ranks to that of a complex model [Nair et al. 2017].

Although the sequence selection needs to be rerun for every new target environment, linear

regression renders the process very fast, ranging from 2 to 60 seconds for 2 to 9 meta environments.

4.2 Meta-Training
The Meta-Training in SeMPL learns the dataset of each meta environment sequentially according to

the optimal sequence (Algorithm 2). Notably, the model parameter values trained under a preceding

meta environment serve as the starting point for learning the data of the succeeding one.

In this work, we use DeepPerf [Ha and Zhang 2019]—a regularized Deep Neural Network

(rDNN)—as the default base learner since it is a state-of-the-art model used for configuration

performance learning. However, we would like to stress that SeMPL is agnostic to the base learner,
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Table 1. Details of the subject systems and the training sizes (for fine-tuning) when an environment is used as

the target. |ℋ|, |𝒲 |, and |𝒱 | respectively denotes the number of hardware, workload, and version considered

for the environments, (|ℬ |/|𝒩 |) denotes the number of binary/numerical options, and |𝒞 | denotes the number

of valid configurations per environment (full sample size).

System Domain |ℬ |/ |𝒩 | |𝒞 | Used by Environments Training Size
|ℋ | |𝒲 | |𝒱 | 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

DeepArch DNN tool 12/0 4096 [Jamshidi et al. 2018] 3 1 1 12 24 36 48 60

SaC Cloud tool 58/0 4999 [Krishna et al. 2021] 1 3 1 58 116 174 232 290

SQLite DBMS 14/0 1000 [Krishna et al. 2021] 2 1 2 14 28 42 56 70

NGINX Web server 16/0 1104 [Weber et al. 2023] 1 1 4 16 32 48 64 80

SPEAR Audio editor 14/0 16385 [Krishna et al. 2021] 3 1 1 14 28 42 56 70

Storm Big data analyzer 1/11 2048 [Jamshidi et al. 2018] 3 1 1 158 211 522 678 1403

ImageMagick Image editor 0/5 100 [Lesoil et al. 2023] 1 4 1 11 24 45 66 70

ExaStencils Code generator 8/4 4098 [Weber et al. 2023] 1 4 1 106 181 366 485 695

x264 Video encoder 11/13 201 [Lesoil et al. 2023] 1 10 1 24 53 81 122 141

hence the choice of using DeepPerf is mainly due to its empirical superiority on accuracy over the

others [Ha and Zhang 2019]. The base learner can be replaced when other concerns, e.g., training

overhead, are of higher priority.

DeepPerf is trained in the same process as used by Ha and Zhang [2019] with hyperparameter

tuning for building the single-models. We kindly refer interested readers to their work for details.

4.3 Fine-Tuning
Since we seek to exploit the learned model parameter values from the trained meta-model as the

starting point in fine-tuning, SeMPL adopts the same DeepPerf as the base learner for the target
environment. As in Algorithm 3, the fine-tuning follows standard training of a typical machine

learning model using samples for the target environment; yet, instead of using an initial model with

random parameter values, the meta-model directly serves as the starting point. As a result, learning

under the target environment can be greatly expedited and improved as the knowledge from meta

environments should have been generalized. The training sample size from the target environment

can vary, for which we examine different sizes as what will be discussed in Section 5. The newly

given configurations can be fed into the fine-tuned meta-model to predict their performance.

5 EXPERIMENT SETUP
Our experiments evaluate SeMPL by answering the following research questions (RQs):

• RQ1: How does SeMPL perform compared with existing single environment models?

• RQ2: How does SeMPL perform compared with the state-of-the-art models that handle

multiple environments?

• RQ3: How effective is the sequence selection in SeMPL?
• RQ4:What is the sensitivity of SeMPL’s accuracy to the sample size used in pre-training?

5.1 Subject Software Systems and Environments
In the experiments, we study widely-used multi-environment configuration datasets collected

from real-world systems
3
[Jamshidi et al. 2017a, 2018; Krishna et al. 2021; Lesoil et al. 2023]. These

systems are selected based on the following:

• To ensure diversity, systems with less than three environments are removed.

3
To ensure reliability, the data has been collected with repeated measurements.
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• In the presence of multiple datasets for the same system, the one that contains the most

deviated measurements between the environments is used.

Within the identified systems, we rule out the data of environments that (1) do not measure all

valid configurations; (2) contain invalid measurements; or (3) lack detailed specifications.

As shown in Table 1, the above process leads to nine systems of diverse domains, scales, and

option types, together with configurations measured in distinct valid environments of hardware,

workloads, and/or versions. To further improve the external validity, we examine the models

under different training sample sizes from the target environment. For binary systems (only binary

options), we use five sizes as prior work [Ha and Zhang 2019]: {𝑥, 2𝑥, 3𝑥, 4𝑥, 5𝑥} where 𝑥 is the

number of options. For mixed systems (both binary and numeric options), we use five sizes as

produced by the sampling method from the work of Siegmund et al. [2012b]. These are the common

methods used in the field [Ha and Zhang 2019; Shu et al. 2020].

5.2 Procedure, Metric and Statistical Validation
5.2.1 Procedure. For each system and comparative approach, we follow the steps below:

(1) Pick an environment as the target ℰ𝑡𝑎𝑟𝑔𝑒𝑡 and set all remaining ones as meta environments.

(2) If applicable, pre-training on all data samples of the meta environments (except for RQ4).

(3) Pick a training sample size 𝑆𝑖 for ℰ𝑡𝑎𝑟𝑔𝑒𝑡 .

(4) Train/fine-tune a model under 𝑆𝑖 randomly selected samples and test it on all the remaining

(unforeseen) samples of ℰ𝑡𝑎𝑟𝑔𝑒𝑡 .

(5) To mitigate bias, repeat (4) for 30 runs via bootstrapping without replacement
4
.

(6) Repeat from (3) to cover all training sample sizes of ℰ𝑡𝑎𝑟𝑔𝑒𝑡 .

(7) Repeat from (1) till every environment has served as the target environment once. In this

way, we avoid bias towards the prediction of a particular environment.

As such, for each of the nine systems, we have five different training sizes and 3–10 alternative

target environments, leading to 15–50 cases of comparisons. In SeMPL, we set the iteration limit for

the outer loop as 1, which is the same default for MAML.
Noteworthily, in this work, we assume the configurations are the same for different meta

environments for all approaches, which is derived from the existing datasets and is the common

assumption from existing work, e.g., BEETLE [Krishna et al. 2021]. However, since the learning

of data from the meta environments is independent of each other in SeMPL (i.e., the information

sharing happens at the model parameter level rather than at the data level), it is not restricted to this

assumption and can directly learn data from the meta-environments for which the configurations

in the data samples are not the same.

5.2.2 Accuracy. As with the sequence selection, we use MRE to assess the accuracy, which is the

standard practice [Chen et al. 2021; Guo et al. 2018; Ha and Zhang 2019; Queiroz et al. 2016; Valov

et al. 2015]. Further, MRE is insensitive to the scale of performance metrics.

5.2.3 Speedup. As in prior work [Chen et al. 2021; Chen and Li 2021, 2024], to assess the training

speedup achieved by SeMPL for a system, we use a baseline, 𝑏, taken as the smallest training size

that the best state-of-the-art counterpart consumes to achieve its best mean MRE. We then find

the smallest size for SeMPL to achieve the same accuracy, denoted as 𝑠 . The ratios, i.e., 𝑠𝑝 = 𝑏
𝑠
,

are reported. Clearly, if SeMPL is more data-efficient, then we would expect 𝑠𝑝 ≥ 1×. When

SeMPL cannot achieve the same mean MRE for all sample sizes, we have 𝑠𝑝 = 𝑁 /𝐴.

4
30 runs is the most common setting in the field of configuration performance learning [Ha and Zhang 2019; Shu et al.

2020]. This number of runs is merely a pragmatic choice given the resource constraint.
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5.2.4 Statistics. To make a fair comparison between more than two models, we again use the

Scott-Knott test [Mittas and Angelis 2013] to evaluate their statistical significance on the difference

of MRE over 30 runs, as recommended by Mittas and Angelis [2013]. In a nutshell, Scott-Knott test

provides the following benefits over the other statistical methods:

• Unlike those parametric tests such as the t-test [Student 1908], it has no assumption on the

data distribution.

• It allows the assessment of more than two models as opposed to the other pair-wise nonpara-

metric tests such as the Wilcoxon test [Wilcoxon 1945] or Mann-Whitney U test [Mann and

Whitney 1947].

• It naturally ranks the model while other multiple comparison tests, e.g., Kruskal-Wallis

test [McKight and Najab 2010], only assess the differences between models without compris-

ing the better or worse. Further, the Scott-Knott test does not need post-hoc correlation.

6 EVALUATION
We now present and discuss the experiment results for the RQs.

6.1 SeMPL against Single Environment Models
6.1.1 Method. To answer RQ1, we compare SeMPL against five state-of-the-art single environment

models, i.e., DeepPerf, DECART, RF, SPLConqueror, and XGBoost, as discussed in Section 2.1. To

ensure fairness, we use the code published by their authors. All settings from Section 5 are used.

6.1.2 Results. As can be seen in Figure 5, on nearly all systems, SeMPL significantly improves the

MRE by up to 81%, 87%, 84%, 99% and 91% over DeepPerf, RF, DECART, SPLConqueror and XGBoost,
respectively. As the default base learner for SeMPL, DeepPerf might occasionally perform worse

even with more data. This is because the target environments exhibit diverse data patterns, which

can easily cause the hyperparameter tuning to be trapped at local optima. Such an issue can be

mitigated when paired with SeMPL since the meta-model is fine-tuned from some good starting

points of the parameters. In particular, SeMPL often achieves considerably better MRE in very few

data samples, commonly with a significant speedup that can be up to 3.86×. This confirms the

generalization efficiency of sequential meta-learning. Remarkably, from the average Scott-Knott

ranks, SeMPL is the best for 8 out of 9 systems (i.e., 89%), demonstrating its superiority over the

single environment models for learning configuration performance, thanks to “learning to learn".

Noteworthy, SeMPL does not achieve the highest rank for Storm, which can be attributed to a

combination of factors including the sparsity of samples (due to the nature of the system) and the

presence of more diverse environments, primarily limited to hardware changes.

RQ1: SeMPL performs significantly better than the state-of-the-art single environment perfor-
mance models in 8 out of 9 systems with the best MRE improvement of 99%; it is also generally
data-efficient with up to 3.86× speedup.

6.2 SeMPL against Multi-Environment Models
6.2.1 Method. To study RQ2, we assess SeMPL against state-of-the-art models based on transfer

learning (BEETLE and tEAMS), multi-task learning (MORF), and meta-learning (MAML and MetaSGD),
as discussed in Section 2.3 and 2.4. Again, the same source code published by their authors is

used. We also examine the approaches that take environmental features as additional inputs, i.e.,

DeepPerf+𝑒 , RF+𝑒 , and SPLConqueror+𝑒 (see Section 2.2).

Since MAML, MetaSGD, BEETLE, and tEAMS are agnostic to the base learner, we pair them with

DeepPerf, which is the same default for SeMPL. Their pre-training data is also identical to that of
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Model DeepArch SaC SQLite NGINX SPEAR Storm ImageMagick ExaStencils x264

SeMPL 1.0 1.53 1.15 1.45 1.07 3.2 1.3 1.0 1.02
DeepPerf 2.4 2.27 2.8 2.55 3.13 3.53 1.9 3.2 2.26

RF 4.0 2.47 1.4 3.45 2.13 1.13 2.05 2.1 2.78

DECART 2.87 1.67 3.15 2.4 1.87 1.73 3.05 3.35 3.18

SPLConqueror 4.0 4.2 5.05 4.65 4.4 5.87 5.0 5.7 4.62

XGBoost 2.93 3.87 4.6 1.95 3.0 4.87 3.8 4.5 3.04

Mean Scott-Knott ranks over all cases/runs. blue cell denotes the best.

Fig. 5. SeMPL versus single environmentmodels. For the simplicity of exposition, we report the log-transformed

average MRE (and its standard error) of all target environments and runs. For speedup (𝑠𝑝 = 𝑏
𝑠 ), denotes

the mean MRE for 𝑏; ✕ indicates the point of 𝑠 . Detailed data can be accessed at: https://github.com/ideas-

labo/SeMPL/blob/main/Figure5_full.pdf .

SeMPL where applicable. All other settings are the same as RQ1. Note that given such a setting, all

the compared approaches use the same amount of data in training/fine-tuning as that of SeMPL,
including those from the target environment.

6.2.2 Results. From Figure 6, we see that in general, SeMPL is mostly more accurate than, or at least

similar to, the best state-of-the-art model that handles multiple environments. The best improve-

ment ranges from 74% (for SPEAR) to 99% (for NGINX). In terms of data efficiency, SeMPL shows
considerable speedup with up to 2.13×. We observe similar findings on the Scott-Knott test: overall,

SeMPL is ranked the best for 89% of the systems (8 out of 9 systems). Meanwhile, although the best

rank for Storm is MORF, we can still see that SeMPL ranks the second in general.

These results match with our theory: transfer learning models like BEETLE and tEAMS are

restricted by their weak generalizability; while multi-task learning models like MORF overcomplicate

the training, which makes the accuracy suffer; meta-learning models like MAML and MetaSGD fail
to discriminate the contributions between different meta environments when pre-training the

meta-model. All of the above shortcomings are what SeMPL seeks to tackle. In particular, models

that take the environments as additional features generally perform badly (e.g., DeepPerf+𝑒 ), due
to the fact that this unnecessarily increases the difficulty of training.
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SeMPL 1.67 1.2 1.2 1.55 1.6 2.73 1.9 1.15 1.48
MAML 3.53 2.67 3.95 7.0 4.6 3.73 2.8 7.65 4.16

MetaSGD 4.2 1.93 3.4 4.65 3.87 3.4 2.5 4.0 3.9

BEETLE 3.67 2.4 2.25 3.1 2.07 3.4 2.5 4.75 2.04

tEAMS 1.8 3.47 2.55 1.85 4.67 4.87 4.4 1.85 4.2

MORF 5.73 2.4 1.85 4.25 3.07 1.0 3.25 2.95 4.78
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DeepPerf+𝑒 2.8 5.8 6.5 3.0 4.6 7.07 3.7 6.3 4.06

SPLConqueror+𝑒 6.13 6.4 6.0 6.0 7.13 6.4 6.7 6.4 7.2

Mean Scott-Knott ranks over all cases/runs. blue cell denotes the best.

Fig. 6. SeMPL versus multi-environment models. The format is the same as Figure 5. Detailed MRE and ranks

can be accessed at: https://github.com/ideas-labo/SeMPL/blob/main/Figure6_full.pdf .

RQ2: Compared with the state-of-the-art models that handles multiple environments,

SeMPL is more effective on 89% of the systems with the best MRE improvement from

74% to 99% while being data-efficient with mostly 𝑠𝑝 ≥ 1 and the best speedup of 2.13×.
In particular, this evidences that the sequential training in SeMPL, which discriminates the

contributions of each meta environment, is more beneficial for configuration performance

learning than the parallel training (e.g., in MAML) that treats all meta environments equally.

6.3 Effectiveness of Sequence Selection
6.3.1 Method. To confirm the necessity of sequence selection in SeMPL, forRQ3, we equip the other

models fromRQ1 with the sequential meta-learning process using all data of the meta environments

in random orders, denoted as DeepPerf+, RF+, SPLConqueror+, and XGBoost+. Thus, they will have
access to exactly the same amount of data as SeMPL, including those from the target enforcement

for fine-tuning. Note that we cannot consider DECART because its mechanism requires initializing

the model from scratch, which is incompatible with the concept of fine-tuning.

To eliminate the noise caused by the default base learner, we also additionally pair SeMPLwith two
alternative base learners, i.e., RF and SPLConqueror, denoted as SeMPL𝑅𝐹 and SeMPL𝑆𝑃𝐿 , respectively.
All other settings are the same as the previous RQs.
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Mean Scott-Knott ranks over all cases/runs. blue cell denotes the best.

Fig. 7. Optimal sequence versus random order in SeMPL. The format is the same as Figure 5. Detailed MRE

and ranks can be accessed at: https://github.com/ideas-labo/SeMPL/blob/main/Figure7_full.pdf .

6.3.2 Result. From Figure 7, we see that SeMPL, SeMPL𝑅𝐹 and SeMPL𝑆𝑃𝐿 generally perform better

than their counterparts on 9 (100%), 5 (56%), and 9 (100%) out of 9 systems, respectively. From this,

we confirm the importance of obtaining the optimal sequence for the sequential learning in SeMPL,
as a random order would likely amplify the side-effect of some badly performing meta environments.

Clearly, using DeepPerf as the base learner in SeMPL dramatically boosts the accuracy across nearly

all training sizes on 8 out of 9 systems with the best speedup of more than 6.56×. Note that while
for DeepArch, SeMPL has the second-best overall rank, it is very close to the best counterpart.

Interestingly, SeMPL𝑅𝐹 might be exacerbated with more training data, e.g., for x264. This is

because the base learner, RF, still suffers from the issue of overfitting under the sample sizes

considered, which, when updating the meta-models over multiple meta environments, can be

harmful due to the cumulatively overfitted model parameters. It is also the reason that SeMPL𝑅𝐹
does not perform as well as RF+ on some systems.

RQ3: The sequence selection helps to improve the results on between 56% and 100% of the

systems based on the base learner. Notably, pairing SeMPL with DeepPerf achieves the best

results overall and leads to considerable speedup.

6.4 Sensitivity to the Pre-Training Size
6.4.1 Method. Instead of full pre-training sizes, inRQ4, we examine the MRE at 0%, 25%, ..., 100% of

the random samples from the full datasets of meta environments, where 0%means no meta-learning.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 17. Publication date: July 2024.

https://github.com/ideas-labo/SeMPL/blob/main/Figure7_full.pdf


Predicting Configuration Performance with SeMPL 17:19

0%25%50%75%
100%

% size

0
25
50
75

100
125
150
175
200

M
RE

 %

DeepArch

0%25%50%75%
100%

% size

0
60

120
180
240
300
360
420
480
540 SaC

0%25%50%75%
100%

% size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 SQLite

0%25%50%75%
100%

% size

0
50

100
150
200
250
300
350
400 NGINX

0%25%50%75%
100%

% size

0
60

120
180
240
300
360
420
480 SPEAR

0%25%50%75%
100%

% size

0
50

100
150
200
250
300
350
400
450 Storm

0%25%50%75%
100%

% size

0

2

4

6

8

10

12

14 ImageMagick

0%25%50%75%
100%

% size

0
2
4
6
8

10
12
14
16 ExaStencils

0%25%50%75%
100%

% size

0
5

10
15
20
25
30
35
40 x264

Fig. 8. Mean MRE and standard error under different percentages of pre-training sizes over 30 runs (the

sample size at the fine-tuning stage is 𝑆1, which is the smallest since we seek to stress test the effect).

6.4.2 Results. In Figure 8, we note that there is generally a monotonic correlation between the

sample size of meta environments and the accuracy: the MRE decreases with more data samples

used in the pre-training of SeMPL. In particular, the case of 0% leads to the worst results on 8 out of

9 systems, suggesting the importance of meta-learning. The only exception is SaC which makes

SeMPL suffer the “curse of dimensionality” more since it has 58 configuration options, whereas

the others range from 5 to 24. Yet, the biggest improvement is case-dependent since the relative

difference in contributions of the meta environments to the learning can vary across the systems.

RQ4: While more data samples in the pre-training can be generally beneficial to SeMPL but

the biggest improvement is case-dependent.

7 DISCUSSION
7.1 What Make SeMPL Special for Configuration Performance Learning?
The proposed sequential pre-training is a specialization of meta-learning for the unique character-

istics of configuration data between different environments (as discussed in Section 3). As such,

SeMPL is specifically designed based on our understanding of the software engineering task at hand.

Indeed, we do not claim that SeMPL can completely eliminate the potentially misleading meta

environments, nor it is feasible to do so since this may incur significant overhead. However, with

the sequential pre-training, SeMPL is able to at least mitigate the effect of those misleading meta

environments by placing them earlier in the sequence. This, as we have shown, can obtain significant

improvement in accuracy over classic frameworks like MAML, which treats all the meta environments

equally. As we discussed in Section 3, even though certain meta environments may be misleading

overall, some of their parameter distribution could still fit well with those needed for the target

environment. Hence, mitigating their effect could be more suitable than their complete omission.

7.2 Practical Application and Overhead of SeMPL
SeMPL was designed under the assumption that there are available data measured under different

environments of a running configurable software system, which is not uncommon [Jamshidi et al.

2018; Krishna et al. 2021; Lesoil et al. 2023; Weber et al. 2023]. Therefore, the applications of SeMPL in
real-world cases are straightforward. Thanks to the sequential pre-training, the contributions of

meta environments can be discriminated with no manual selection required, hence the more useful

ones will contribute more to the learning. Of course, like any learning models, software engineers

would need to decide on the training sample size to be measured for the target environment,

together with whether the default base learner in SeMPL, i.e., DeepPerf that favors accuracy, is

suitable for the specific scenario as the training of the base learner would constitute the majority

of the SeMPL’s overhead during pre-training.
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On a machine with CPU 2GHz and 16GB RAM, SeMPL only needs 2 and 60 seconds to find the

optimal sequence of learning meta environments on a system with 3 and 10 meta environments,

respectively, thanks to the linear regression. Of course, the overhead can increase with more meta

environments, but the magnitude is still acceptable since the pre-training is an offline process.

7.3 Threats to Validity
Internal threats is concerned with the parameter settings, e.g., the training size. We mitigate

this by following the same settings used in the state-of-the-art studies [Guo et al. 2013; Ha and

Zhang 2019; Shu et al. 2020; Siegmund et al. 2012b]. We also examined the sensitivity of SeMPL to

the pre-training sample size in RQ4. SeMPL is tested with DeepPerf as the base learner, which can

be flexibly replaced. Of course, as in RQ3, replacing DeepPerf could lead to different results but

this is up to the software engineers to decide if other factors, such as training efficiency, are more

important. The use of linear regression as a surrogate of the base learner might also raise threats to

internal validity since it might not be perfectly accurate. However, our results show this still leads

to significant improvement compared with the state-of-the-art.

Construct threats are mainly related to the evaluation metric. In this work, we use MRE as the

main accuracy metric as it is less sensitive to the scales in different environments and systems while

being the most common metric from the literature of configuration performance learning [Guo

et al. 2018; Ha and Zhang 2019; Shu et al. 2020]. To measure the speedup, we follow the same

protocol as used in prior work [Chen et al. 2021; Chen and Li 2021] from the field.

External threats could lie in the systems and environments studied. To mitigate such, we

exploit the most commonly used datasets for diverse systems [Jamshidi et al. 2018; Krishna et al.

2021; Lesoil et al. 2023]. For each of these, we select all the eligible environments for evaluation.

The experiments are also repeated 30 times, which tends to be sufficient to reduce randomness.

The Scott-Knott test is adopted to ensure the statistical significance of the results. However, we

acknowledge that using more systems and environments might be beneficial.

8 CONCLUSION
To deal withmultiple environments when predicting performance for configurable software systems,

this paper proposes a new category of framework that leverages meta-learning, dubbed SeMPL.
What makes SeMPL unique is that it learns the meta environments, one at a time, in a specific order

according to the likely usefulness of the meta environment to the unforeseen target environment.

Such sequential learning, unlike the existing parallel learning, naturally allows the pre-training to

discriminate the contributions between meta environments, thereby handling the largely deviated

samples from different environments—a key characteristic of the configuration data. Extensive

experiments on nine widely-used systems in current studies demonstrate that SeMPL significantly

outperforms state-of-the-art single/multi-environment models with considerable speedup. As such,

SeMPL is more useful for predicting configuration performance in new environments.

In the future, we hope that the concept behind SeMPL will inspire a vast direction of research for

meta-performance learning, including heterogeneous meta-learning and more precise management

of the sample variations between environments in configuration data.
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All source code and data can be found at our repository: https://github.com/ideas-labo/SeMPL.
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